Thursday, March 25, 2010

Nutrient

Nutrient cycle in the oceans

A nutrient is a chemical that an organism needs to live and grow or a substance used in an organism's metabolism which must be taken in from its environment.[1] Nutrients are the substances that enrich the body. They build and repair tissues, give heat and energy, and regulate body processes. Methods for nutrient intake vary, with animals and protists consuming foods that are digested by an internal digestive system, but most plants ingest nutrients directly from the soil through their roots or from the atmosphere. Some plants, like carnivorous plants, externally digest nutrients from animals, before ingesting them. The effects of nutrients are dose-dependent.

Organic nutrients include carbohydrates, fats, proteins (or their building blocks, amino acids), and vitamins. Inorganic chemical compounds such as dietary minerals, water, and oxygen may also be considered nutrients.[citation needed] A nutrient is essential to an organism if it cannot be synthesized by the organism in sufficient quantities and must be obtained from an external source. Nutrients needed in large quantities are called macronutrients; micronutrients are required in only small quantities.

See healthy diet for more information on the role of nutrients in human nutrition.

Contents

[hide]

[edit] Types of nutrient

Macronutrients are defined in several different ways.

The remaining vitamins, minerals, fats or elements, are called micronutrients because there required in relatively small quantities.

[edit] Substances that provide energy

Fat has an energy content of 9 kcal/g (~37.7 kJ/g); proteins and carbohydrates 4 kcal/g (~16.7 kJ/g). Ethanol (grain alcohol) has an energy content of 7 kcal/g (~29.3 kJ/g).[2]

[edit] Substances that support metabolism

  • Dietary minerals are generally trace elements, salts, or ions such as copper and iron. Some of these minerals are essential to human metabolism.
  • Vitamins are organic compounds essential to the body. They usually act as coenzymes or cofactors for various proteins in the body.
  • Water is an essential nutrient and is the solvent in which all the chemical reactions of life take place.
The strip of a green alga (Enteromorpha) along this shore indicates that there is a nearby source of nutrients (probably nitrates or ammonia from a small estuary).

The chemical elements consumed in the greatest quantities by plants are carbon, hydrogen, and oxygen. These are present in the environment in the form of water and carbon dioxide; energy is provided by sunlight. Nitrogen, phosphorus, potassium, and sulfur are also needed in relatively large quantities. Together, these are the elemental macronutrients for plants, often represented by the acronym CHNOPS. Usually they are sourced from inorganic (e.g. carbon dioxide, water, nitrate, phosphate, sulfate) or organic (e.g. carbohydrates, lipids, proteins) compounds, although elemental diatomic molecules of nitrogen and (especially) oxygen are often used.

Other chemical elements are also necessary to carry out various life processes and build structures; see fertilizer and micronutrient for more information.

Some of these are considered macronutrients in certain organisms. The mnemonic C. HOPKiN'S CaFe Mg (to be used as C. Hopkins coffee mug) is used by some students to remember the list as: Carbon, Hydrogen, Oxygen, Phosphorus, Potassium (K), Nitrogen, Sulfur, Calcium, Iron (Fe), and Magnesium (Mg). Silicon, chloride, sodium, copper, zinc, and molybdenum are sometimes also included, but are in other cases considered micronutrients.[3]

Oversupply of plant nutrients in the environment can cause excessive plant and algae growth. Eutrophication, as this process is called, may cause imblances in population numbers and other nutrients that can be harmful to certain species. For example, an algal bloom can deplete the oxygen available for fish to breathe. Causes include water pollution from sewage or runoff from farms (carrying excess agricultural fertilizer). Nitrogen and phosphorus are most commonly the limiting factor in growth, and thus the most likely to trigger eutrophication when introduced artificially.

[edit] Essential and non-essential nutrients

Nutrients are frequently categorized as essential or nonessential. Essential nutrients are unable to be synthesized internally (either at all, or in sufficient quantities), and so must be consumed by an organism from its environment.

For humans, these include essential fatty acids, essential amino acids, vitamins, and certain dietary minerals. Oxygen and water are also essential for human survival, but are generally not considered "food" when consumed in isolation.

Humans can derive energy from a wide variety of fats, carbohydrates, proteins, and ethanol, and can synthesize other needed amino acids from the essential nutrients.

Non-essential substances within foods can still have a significant impact on health, whether beneficial or toxic. For example, most dietary fiber is not absorbed by the human digestive tract, but is important in digestion and absorption of otherwise harmful substances. Interest has recently increased in phytochemicals, which include many non-essential substances which may have health benefits.[1]

[edit] References

  • Donatelle, Rebecca J.2008. Health: The Basics, 8th edition. Benjamin Cummings, ISBN 978-0321523020
  • Whitney, Elanor and Sharon Rolfes. 2007. Understanding Nutrition, 11th edition. Wadsworth Publishing ISBN 978-0495116868
  1. ^ a b Whitney, Elanor and Sharon Rolfes. 2005. Understanding Nutrition, 10th edition, p 6. Thomson-Wadsworth.
  2. ^ Coyle EF. 1995. Fat metabolism during exercise. Sports science exchange 8(6):59-65
  3. ^ Perry, David A (1994), Forest ecosystems, Baltimore: Johns Hopkins University Press, ISBN 9780801849879

No comments: